3.600 \(\int \cot ^6(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=182 \[ -\frac{2 a^2 \cot ^7(c+d x)}{7 d}+\frac{45 a^2 \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{64 d}-\frac{35 a^2 \cot (c+d x) \csc (c+d x)}{128 d} \]

[Out]

(45*a^2*ArcTanh[Cos[c + d*x]])/(128*d) - (2*a^2*Cot[c + d*x]^7)/(7*d) - (35*a^2*Cot[c + d*x]*Csc[c + d*x])/(12
8*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x])/(24*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x])/(6*d) - (5*a^2*Cot[c + d
*x]*Csc[c + d*x]^3)/(64*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x]^3)/(48*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x]^3
)/(8*d)

________________________________________________________________________________________

Rubi [A]  time = 0.313335, antiderivative size = 182, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2873, 2611, 3770, 2607, 30, 3768} \[ -\frac{2 a^2 \cot ^7(c+d x)}{7 d}+\frac{45 a^2 \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{64 d}-\frac{35 a^2 \cot (c+d x) \csc (c+d x)}{128 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*Csc[c + d*x]^3*(a + a*Sin[c + d*x])^2,x]

[Out]

(45*a^2*ArcTanh[Cos[c + d*x]])/(128*d) - (2*a^2*Cot[c + d*x]^7)/(7*d) - (35*a^2*Cot[c + d*x]*Csc[c + d*x])/(12
8*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x])/(24*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x])/(6*d) - (5*a^2*Cot[c + d
*x]*Csc[c + d*x]^3)/(64*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x]^3)/(48*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x]^3
)/(8*d)

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int \cot ^6(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x))^2 \, dx &=\int \left (a^2 \cot ^6(c+d x) \csc (c+d x)+2 a^2 \cot ^6(c+d x) \csc ^2(c+d x)+a^2 \cot ^6(c+d x) \csc ^3(c+d x)\right ) \, dx\\ &=a^2 \int \cot ^6(c+d x) \csc (c+d x) \, dx+a^2 \int \cot ^6(c+d x) \csc ^3(c+d x) \, dx+\left (2 a^2\right ) \int \cot ^6(c+d x) \csc ^2(c+d x) \, dx\\ &=-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{8} \left (5 a^2\right ) \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx-\frac{1}{6} \left (5 a^2\right ) \int \cot ^4(c+d x) \csc (c+d x) \, dx+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int x^6 \, dx,x,-\cot (c+d x)\right )}{d}\\ &=-\frac{2 a^2 \cot ^7(c+d x)}{7 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{1}{16} \left (5 a^2\right ) \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac{1}{8} \left (5 a^2\right ) \int \cot ^2(c+d x) \csc (c+d x) \, dx\\ &=-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{5 a^2 \cot (c+d x) \csc (c+d x)}{16 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{64} \left (5 a^2\right ) \int \csc ^3(c+d x) \, dx-\frac{1}{16} \left (5 a^2\right ) \int \csc (c+d x) \, dx\\ &=\frac{5 a^2 \tanh ^{-1}(\cos (c+d x))}{16 d}-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{35 a^2 \cot (c+d x) \csc (c+d x)}{128 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{128} \left (5 a^2\right ) \int \csc (c+d x) \, dx\\ &=\frac{45 a^2 \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{35 a^2 \cot (c+d x) \csc (c+d x)}{128 d}+\frac{5 a^2 \cot ^3(c+d x) \csc (c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc (c+d x)}{6 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}\\ \end{align*}

Mathematica [B]  time = 0.106805, size = 401, normalized size = 2.2 \[ a^2 \left (-\frac{\tan \left (\frac{1}{2} (c+d x)\right )}{7 d}+\frac{\cot \left (\frac{1}{2} (c+d x)\right )}{7 d}-\frac{\csc ^8\left (\frac{1}{2} (c+d x)\right )}{2048 d}+\frac{\csc ^6\left (\frac{1}{2} (c+d x)\right )}{512 d}+\frac{17 \csc ^4\left (\frac{1}{2} (c+d x)\right )}{1024 d}-\frac{83 \csc ^2\left (\frac{1}{2} (c+d x)\right )}{512 d}+\frac{\sec ^8\left (\frac{1}{2} (c+d x)\right )}{2048 d}-\frac{\sec ^6\left (\frac{1}{2} (c+d x)\right )}{512 d}-\frac{17 \sec ^4\left (\frac{1}{2} (c+d x)\right )}{1024 d}+\frac{83 \sec ^2\left (\frac{1}{2} (c+d x)\right )}{512 d}-\frac{45 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{128 d}+\frac{45 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{128 d}-\frac{\cot \left (\frac{1}{2} (c+d x)\right ) \csc ^6\left (\frac{1}{2} (c+d x)\right )}{448 d}+\frac{5 \cot \left (\frac{1}{2} (c+d x)\right ) \csc ^4\left (\frac{1}{2} (c+d x)\right )}{224 d}-\frac{19 \cot \left (\frac{1}{2} (c+d x)\right ) \csc ^2\left (\frac{1}{2} (c+d x)\right )}{224 d}+\frac{\tan \left (\frac{1}{2} (c+d x)\right ) \sec ^6\left (\frac{1}{2} (c+d x)\right )}{448 d}-\frac{5 \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right )}{224 d}+\frac{19 \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right )}{224 d}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*Csc[c + d*x]^3*(a + a*Sin[c + d*x])^2,x]

[Out]

a^2*(Cot[(c + d*x)/2]/(7*d) - (83*Csc[(c + d*x)/2]^2)/(512*d) - (19*Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^2)/(224*
d) + (17*Csc[(c + d*x)/2]^4)/(1024*d) + (5*Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^4)/(224*d) + Csc[(c + d*x)/2]^6/(
512*d) - (Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^6)/(448*d) - Csc[(c + d*x)/2]^8/(2048*d) + (45*Log[Cos[(c + d*x)/2
]])/(128*d) - (45*Log[Sin[(c + d*x)/2]])/(128*d) + (83*Sec[(c + d*x)/2]^2)/(512*d) - (17*Sec[(c + d*x)/2]^4)/(
1024*d) - Sec[(c + d*x)/2]^6/(512*d) + Sec[(c + d*x)/2]^8/(2048*d) - Tan[(c + d*x)/2]/(7*d) + (19*Sec[(c + d*x
)/2]^2*Tan[(c + d*x)/2])/(224*d) - (5*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])/(224*d) + (Sec[(c + d*x)/2]^6*Tan[(
c + d*x)/2])/(448*d))

________________________________________________________________________________________

Maple [A]  time = 0.086, size = 192, normalized size = 1.1 \begin{align*} -{\frac{3\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{16\,d \left ( \sin \left ( dx+c \right ) \right ) ^{6}}}+{\frac{3\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{64\,d \left ( \sin \left ( dx+c \right ) \right ) ^{4}}}-{\frac{9\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{128\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{9\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{128\,d}}-{\frac{15\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{128\,d}}-{\frac{45\,{a}^{2}\cos \left ( dx+c \right ) }{128\,d}}-{\frac{45\,{a}^{2}\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{128\,d}}-{\frac{2\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{7\,d \left ( \sin \left ( dx+c \right ) \right ) ^{7}}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{8\,d \left ( \sin \left ( dx+c \right ) \right ) ^{8}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*csc(d*x+c)^9*(a+a*sin(d*x+c))^2,x)

[Out]

-3/16/d*a^2/sin(d*x+c)^6*cos(d*x+c)^7+3/64/d*a^2/sin(d*x+c)^4*cos(d*x+c)^7-9/128/d*a^2/sin(d*x+c)^2*cos(d*x+c)
^7-9/128*a^2*cos(d*x+c)^5/d-15/128*a^2*cos(d*x+c)^3/d-45/128*a^2*cos(d*x+c)/d-45/128/d*a^2*ln(csc(d*x+c)-cot(d
*x+c))-2/7/d*a^2/sin(d*x+c)^7*cos(d*x+c)^7-1/8/d*a^2/sin(d*x+c)^8*cos(d*x+c)^7

________________________________________________________________________________________

Maxima [A]  time = 1.04662, size = 298, normalized size = 1.64 \begin{align*} -\frac{7 \, a^{2}{\left (\frac{2 \,{\left (15 \, \cos \left (d x + c\right )^{7} + 73 \, \cos \left (d x + c\right )^{5} - 55 \, \cos \left (d x + c\right )^{3} + 15 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1} - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - 56 \, a^{2}{\left (\frac{2 \,{\left (33 \, \cos \left (d x + c\right )^{5} - 40 \, \cos \left (d x + c\right )^{3} + 15 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1} + 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac{1536 \, a^{2}}{\tan \left (d x + c\right )^{7}}}{5376 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^9*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/5376*(7*a^2*(2*(15*cos(d*x + c)^7 + 73*cos(d*x + c)^5 - 55*cos(d*x + c)^3 + 15*cos(d*x + c))/(cos(d*x + c)^
8 - 4*cos(d*x + c)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x +
c) - 1)) - 56*a^2*(2*(33*cos(d*x + c)^5 - 40*cos(d*x + c)^3 + 15*cos(d*x + c))/(cos(d*x + c)^6 - 3*cos(d*x + c
)^4 + 3*cos(d*x + c)^2 - 1) + 15*log(cos(d*x + c) + 1) - 15*log(cos(d*x + c) - 1)) + 1536*a^2/tan(d*x + c)^7)/
d

________________________________________________________________________________________

Fricas [A]  time = 1.19501, size = 668, normalized size = 3.67 \begin{align*} -\frac{512 \, a^{2} \cos \left (d x + c\right )^{7} \sin \left (d x + c\right ) - 1162 \, a^{2} \cos \left (d x + c\right )^{7} + 3066 \, a^{2} \cos \left (d x + c\right )^{5} - 2310 \, a^{2} \cos \left (d x + c\right )^{3} + 630 \, a^{2} \cos \left (d x + c\right ) - 315 \,{\left (a^{2} \cos \left (d x + c\right )^{8} - 4 \, a^{2} \cos \left (d x + c\right )^{6} + 6 \, a^{2} \cos \left (d x + c\right )^{4} - 4 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 315 \,{\left (a^{2} \cos \left (d x + c\right )^{8} - 4 \, a^{2} \cos \left (d x + c\right )^{6} + 6 \, a^{2} \cos \left (d x + c\right )^{4} - 4 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{1792 \,{\left (d \cos \left (d x + c\right )^{8} - 4 \, d \cos \left (d x + c\right )^{6} + 6 \, d \cos \left (d x + c\right )^{4} - 4 \, d \cos \left (d x + c\right )^{2} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^9*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/1792*(512*a^2*cos(d*x + c)^7*sin(d*x + c) - 1162*a^2*cos(d*x + c)^7 + 3066*a^2*cos(d*x + c)^5 - 2310*a^2*co
s(d*x + c)^3 + 630*a^2*cos(d*x + c) - 315*(a^2*cos(d*x + c)^8 - 4*a^2*cos(d*x + c)^6 + 6*a^2*cos(d*x + c)^4 -
4*a^2*cos(d*x + c)^2 + a^2)*log(1/2*cos(d*x + c) + 1/2) + 315*(a^2*cos(d*x + c)^8 - 4*a^2*cos(d*x + c)^6 + 6*a
^2*cos(d*x + c)^4 - 4*a^2*cos(d*x + c)^2 + a^2)*log(-1/2*cos(d*x + c) + 1/2))/(d*cos(d*x + c)^8 - 4*d*cos(d*x
+ c)^6 + 6*d*cos(d*x + c)^4 - 4*d*cos(d*x + c)^2 + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**9*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.39621, size = 351, normalized size = 1.93 \begin{align*} \frac{7 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} + 32 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 224 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 280 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 672 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 1792 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 5040 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - 1120 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{13698 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} + 1120 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 1792 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 672 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 280 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 224 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 32 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 7 \, a^{2}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8}}}{14336 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^9*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/14336*(7*a^2*tan(1/2*d*x + 1/2*c)^8 + 32*a^2*tan(1/2*d*x + 1/2*c)^7 - 224*a^2*tan(1/2*d*x + 1/2*c)^5 - 280*a
^2*tan(1/2*d*x + 1/2*c)^4 + 672*a^2*tan(1/2*d*x + 1/2*c)^3 + 1792*a^2*tan(1/2*d*x + 1/2*c)^2 - 5040*a^2*log(ab
s(tan(1/2*d*x + 1/2*c))) - 1120*a^2*tan(1/2*d*x + 1/2*c) + (13698*a^2*tan(1/2*d*x + 1/2*c)^8 + 1120*a^2*tan(1/
2*d*x + 1/2*c)^7 - 1792*a^2*tan(1/2*d*x + 1/2*c)^6 - 672*a^2*tan(1/2*d*x + 1/2*c)^5 + 280*a^2*tan(1/2*d*x + 1/
2*c)^4 + 224*a^2*tan(1/2*d*x + 1/2*c)^3 - 32*a^2*tan(1/2*d*x + 1/2*c) - 7*a^2)/tan(1/2*d*x + 1/2*c)^8)/d